Visit Nature news for the latest coverage and read Springer Nature's statement on the Ukraine conflict

Search Q 📜 Log in

Original Article | <u>Published: 11 March 2021</u> Iodine supplementation for pregnant women: a cross-sectional national interventional study

<u>H. Delshad</u>, <u>A. Raeisi</u>, <u>Z. Abdollahi</u>, <u>M. Tohidi</u>, <u>M. Hedayati</u>, <u>P.</u> Mirmiran, <u>F. Nobakht & F. Azizi</u>

Journal of Endocrinological Investigation **44**, 2307–2314 (2021)

345 Accesses 2 Altmetric Metrics

Abstract

Background

Although Iran has been considered iodine replete since 2000, the first national survey of iodine intake among Iranian pregnant women in 2014 indicated that despite the adequate intake of iodine by the general population, this vulnerable group has moderate iodine deficiency. Therefore, in this national cross-sectional interventional study, we aimed to assess the iodine intake and thyroid function of Iranian pregnant women 2 years after implementing national iodine supplementation for this vulnerable group.

Materials and methods

In this cross-sectional study, we conducted a national interventional survey of pregnant women. A total of 1200 pregnant women (400 women from each trimester) from 12 provinces of Iran were recruited from the antenatal care clinics from October 2018 to March 2019. The median urinary iodine concentration (MUIC), as an indicator of iodine status in three spot urine samples, was measured, along with the serum total T4 (TT4), thyrotropin (TSH), thyroglobulin (Tg), thyroid peroxidase antibody (TPO-Ab), and iodine content of household salt.

Results

The mean age of the cohort was 28 ± 6.2 years, with the mean gestational age of 22.7 ± 13.0 weeks. The overall MUIC (IQR) of pregnant women was $188 \,\mu\text{g/L}$ (124.2–263 $\mu\text{g/L}$). Also, the MUICs in the three trimesters of pregnancy were $174 \,\mu\text{g/L}$ (110-254), 175 μ g/L (116–251), and 165 μ g/L (114–235), respectively. The MUICs \geq 150, 100–149, and < 100 μ g/L were found in 63, 19.8, and 16.2% of the subjects, respectively. The mean TT4 level was 12 \pm 4.5 µg/dL, and the median (IQR) level of TSH was 2.37 mIU/L (1.66-3.18 mIU/L). According to our local reference range, 118 (10.5%) pregnant women had subclinical hypothyroidism, 6 (0.53%) women had isolated hypothyroxinemia, and 65 (5.7%) women were TPO-Ab positive. Also, the median (IQR) level of Tg was 10.08 μ g/dL (5.7–20.4 μ g/dL), and the median iodine content of household salt was 29.6 μ g/g; the iodine content was \geq 30 μ g/g in 85% of household salt. The results showed that more than 95% of households were under iodized salt coverage.

Conclusion

The results of this study indicated that iodine supplementation with at least 150 µg of iodine per day improved the iodine intake of pregnant women. Except for subclinical hypothyroidism, the prevalence of clinical hypothyroidism, clinical/subclinical thyrotoxicosis, TPO-Ab positivity, and isolated hypothyroxinemia decreased significantly, which emphasizes the importance of iodine supplementation during pregnancy.

This is a preview of subscription content, <u>access via</u> <u>your institution</u>.

Access options Buy article PDF **34,95 €** Price includes VAT (Iran) Tax calculation will be finalised during checkout. Instant access to the full article PDF.

Learn more about Institutional subscriptions https://link.springer.com/article/10.1007/s40618-021-01538-z

References

- Glinoer D (2006) Iodine nutrition requirements during pregnancy. Thyroid 16:947–948
- Dafnis E, Sabatini S (1992) The effect of pregnancy on renal function: physiology and pathophysiology. Am J Med Sci 303(3):184–205
- **3.** Smyth PP (1999) Variation in iodine handling during normal pregnancy. Thyroid 7:637–642
- 4. Leung AM, Pearce EN, Braverman LE (2011) Iodine nutrition in pregnancy and lactation. EndocrinolMetabClin North Am 40:765–777
- Perrine CG, Herrick K, Serdula MK, Sullivan KM (2010) Some subgroups of reproductive age women in the United States may be at risk for iodine deficiency. J Nutr 140(8):1489–1494
- 6. Tahirović H, Toromanović A, Balić A, Grbić S, Gnat D (2009) Iodine nutrition status of pregnant women in an iodine sufficient area. Food Nutr Bull 30:351–354

7. Travers CA, Guttikonda K, Norton CA, Lewis PR,

Mollart LJ et al (2006) Iodine status in pregnant women and their newborns: are our babies at risk of iodine deficiency? Med J Aust 184:617–620

- Pearce EN, Lazarus JH, Moreno-Reyes R, Zimmermann MB (2016) Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns. Am J ClinNutr 104(Suppl 3):S918–S923
- 9. Pharoah POD, Buttfield IH, Hetzel BS (1971) Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet 297:308–310
- 10. Thilly C, Lagasse R, Roger G, Bourdoux P, Ermans AM (1980) Impaired fetal and postnatal development and high perinatal death rate in a severe iodine deficient area. In: Stockigt JR, Nagataki S, Meldrum E, Barlow JW, Harding PE (eds) Thyroid research VIII. Australian Academy of Science, Canberra, Australia, pp 20–23
- Menon KC, Skeaff SA, Thomson CD, Gray AR, Ferguson EL et al (2011) The effect of maternal iodine status on infant outcomes in an iodinedeficient Indian population. Thyroid 21:1373– 1380

- 12. Velasco I, Bath SC, Rayman MP (2018) Iodine as essential nutrient during the first 1000 days of life. Nutrients 10(3):290
- 13. Bath SC, Steer CD, Golding J, Emmett P, Rayman MP (2013) Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon longitudinal study of parents and children (ALSPAC). Lancet 382(9889):331–337
- 14. Hynes KL, Otahal P, Hay I, Burgess JR (2013)
 Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. J ClinEndocrinolMetab 98(5):1954–1962
- 15. Abel MH, Caspersen IH, Meltzer HM, Haugen M, Brandlistuen RE, Aase H, Alexander J, Torheim LE, Brantsaeter AL (2017) Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian mother and child cohort study. J Nutr 147(7):1314–1324
- 16. Markhus MW, Dahl L, Moe V, Abel MH,Brantsæter AL, Øyen J et al (2018) Maternal

iodine status is associated with offspring language skills in infancy and toddlerhood. Nutrients 10(9):1270

- 17. Gowachirapant S, Jaiswal N, Melse-Boonstra A, Galetti V, Stinca S, Mackenzie I et al (2017)
 Effect of iodine supplementation in pregnant women on child neurodevelopment: a randomized, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 5(11):853–863
- 18. Moreno-Reyes R, Glinoer D, Van Oyen H, Vandevijvere S (2013) High prevalence of thyroid disorders in pregnant women in a mildly iodine-deficient country: a population-based study. J ClinEndocrinolMetab 98:3694
- **19.** Dineva M, Rayman MP, Levie D, Guxens M, Peeters RP, Vioque J et al (2020) Similarities and differences of dietary and other determinants of iodinestatus in pregnant women from three European birth cohorts. Eur J Nutr 59(371–87):34
- 20. Nazarpour S, Tehrani FR, Behboudi-Gandevani S, Yarandi RB, Azizi F (2020) Maternal urinary iodine concentration and pregnancy outcomes in euthyroid pregnant women: a systematic

review and meta-analysis. Biol Trace Elem Res

197(2):411-420

- 21. Delshad H, Touhidi M, Abdollahi Z, Hedayati M, Salehi F, Azizi F (2016) Inadequate iodine nutrition of pregnant women in an area of iodine sufficiency. J Endocrinol Invest 39(7):755–762
- 22. Etemadi A, Amouzegar A, Mehran L, Tohidi M, Azizi F, Moradi K, Delshad H (2020) Isolated hypothyroxinemia in Iranian pregnant women, the role of iodine deficiency: a population-based cross-sectional study. Thyroid 30(2):262–269
- 23. Sandell EB, Koltoff IM (1937) Micro determination of iodine by a catalytic method. MikrochemActa 1:9–25
- 24. WHO (2007) Titration method for determining salt iodate and salt iodide content. Assessment of iodine deficiency disorders and monitoring their elimination. A guide for programmers. WHO
- 25. Azizi F, Mehran L, Amouzegar A, Delshad H et al (2013) Establishment of the trimester-specific reference range for free thyroxin index. Thyroid 23(3):354–359

26. Amouzegar A, Ainy E, Khazan M et al (2014) Local versus international recommended TSH references in the assessment of thyroid function during pregnancy. HormMetab Res 46:206–210

- 27. Iodine Global Network (2016) The Iodine Global Network: 2016 annual report. Iodine Global Network, Seattle, WA. Available from <u>http://www.ign.org/cm_data/IGN_Annual_Re</u> <u>port_2016.pdf</u>. Accessed 7 May 2019
- 28. Bath S (2019) The effect of iodine deficiency during pregnancy on child development.
 ProcNutrSoc 78(2):150–160
- 29. Zimmermann MB, Boelaert K (2015) Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol 3:286–295
- **30.** Zimmermann MB (2009) Iodine deficiency in pregnancy and the effects of maternal iodine supplementation on the offspring: a review. Am J ClinNutr 89:668S-S672
- 31. Iodine Global Network (2017) Global scorecard of iodine nutrition in 2017 in the general population based on school-age children (SAC) with additional data for pregnant women (PW).

Iodine Global Network, Zurich, Switzerland

(cited 7 May 2019)

- **32.** Lertxundi N, Navarrete-Muñoz EM, Forns J, Aranbarri A, Llop S et al (2013) Iodine supplementation during pregnancy and infant neuropsychological development. INMA mother and child cohort study. Am J Epidemiol 177:944–953
- **33.** Berbel P, Mestre JL, Santamaría A, Palazón I, Franco A, Graells M, González-Torga A, de Escobar GM (2009) Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid 19:511–519
- 34. Velasco I, Carreira M, Santiago P, Muela JA, García-Fuentes E, Sánchez-Muñoz B et al (2009) Effect of iodine prophylaxis during pregnancy on neurocognitive development of children during the first two years of life. J ClinEndocrinolMetab 94:3234–3241
- **35.** Zhou SJ, Anderson AJ, Gibson RA, Makrides M (2013) Effect of iodine supplementation in pregnancy on child development and other clinical outcomes: a systematic review of

randomized controlled trials. Am J ClinNutr

98:1241-1254

- 36. Zimmermann MB (2013) Nutrition: are mild maternal iodine deficiency and child IQ linked? Nat Rev Endocrinol 9:505–506
- 37. Qian M, Wang D, Watkins WE, Gebski V, Yan YQ, Li Mu, Chen ZP (2005) The effects of iodine on intelligence in children: a meta-analysis of studies conducted in China. Asia Pac J ClinNutr 14:32–42
- **38.** Taylor PN, Okosieme OE, Dayan CM, Lazarus JH (2013) Therapy of endocrine disease: impact of iodine supplementation in mild-to-moderate iodine deficiency: systematic review and metaanalysis. Eur J Endocrinol 170(1):R1–R15

39. Rebagliato M, Murica M, Alvarez-Pedrerol M, Fernandez-Aomoano A, Lertxundi N, Navarrete-Munoz EM, Forns J, Aranbarri A, Llop S (2013) Iodine supplementation during pregnancy and infant neuropsychological development. INMA mother and child cohort study. Am J Epidemiol 177:944–953

40. Mohammed H, Marquis GS, Aboud F, Bougma

K, Samuel A (2020) Pre-pregnancy iodized salt improved children's cognitive development in randomized trial in Ethiopia. Matern Child Nutr Jul 16(3):e12943

- 41. Dineva M, Fishpool H, Rayman MP, Mendis J, Bath SC (2020) Systematic review and metaanalysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am J ClinNutr 112(2):389– 412
- 42. De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH et al (2012) Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J ClinEndocrinolMetab 97:2543–2565
- **43.** Secretariat WHO, Andersson M, de Benoist B, Delange F, Zupan J (2007) Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2years-old: conclusions and recommendations of the technical consultation. Public Health Nutr 10:1606–1611

44. Becker DV, Braverman LE, Delange F, Dunn JT,

Franklyn JA, Hollowell JG et al (2006) Iodine supplementation for pregnancy and lactation— United States and Canada: recommendations of the American thyroid association. Thyroid 16:949–951

- 45. WHO/UNICEF (2007) Reaching optimal iodine nutrition in pregnant and lactating women and young children. Joint statement by the WHO and the UNICEF. World Health Organization, Geneva
- 46. International Council for Control of Iodine Deficiency Disorders (2007) Iodine requirements in pregnancy and infancy. IDD Newsl 23(1):1–2
- 47. Institute of Medicine Food and Nutrition Board (2006) Dietary reference intakes. National Academies Press, Washington, DC
- 48. Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10:136– 142
- **49.** Abel MH, Ystrom E, Caspersen IH, Meltzer HM, Aase H, Torheim LE et al (2017) Maternal iodine intake and offspring attention-

deficit/hyperactivity disorder: results from a large prospective cohort study. Nutrients 9(11):1239

- 50. Rebagliato M, Murcia M, Espada M, Alvarez-Pedrerol M, Bolumar F, Vioque J et al (2010) Iodine intake and maternal thyroid function during pregnancy. Epidemiology 21(1):62–69
- 51. Connelly KJ, Boston BA, Pearce EN, Sesser D, Snyder D, Braverman LE, Pino S, La Franchi SH (2012) Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J Pediatr 161:760–762
- 52. Shi X, Han C, Li C, Mao J, Wang W, Xie X et al (2015) Optimal and safe upper limits of iodine intake for early pregnancy in iodine-sufficient regions: a cross-sectional study of 7190 pregnant women in China. J ClinEndocrinolMetab 100:1630–1638
- 53. Dosiou C, Medici M (2017) Management of endocrine disease: isolated maternal hypothyroxinemia during pregnancy: knowns and unknowns. Eur J Endocrinol 176(1):R21– R38

54. Korevaar TIM, Medici M, Visser TJ, Peeters RP (2017) Thyroid disease in pregnancy: new insights in diagnosis and clinical management. Nat Rev Endocrinol 13(10):610–662

- 55. Chan S, Boelaert K (2015) Optimal management of hypothyroidism, hypothyroxinemia and euthyroid TPO antibody positivity preconception and in pregnancy. ClinEndocrinol (Oxf) 82(3):313–326
- 56. Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C (2017) Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 342:68– 100
- 57. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J et al (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341:549–555
- 58. Henrichs J, Bongers-Schokking JJ, Schenk JJ, Ghassabian A, Schmidt HG, Visser TJ et al (2010) Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the Generation R study. J ClinEndocrinolMetab 95:4227–4234

- **59.** Levie D, Korevaar TIM, Bath SC, Murcia M, Dineva M, Llop S et al (2019) Association of maternal iodine status with child IQ: a metaanalysis of individual participant data. J ClinEndocrinolMetab 104(12):5957–5967
- 60. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH et al (2016) The Generation R study: design and cohort update 2017. Eur J Epidemiol 31(12):1243–1264
- **61.** Hamm MP, Cherry NM, Martin JW, Bamforth F, Burstyn I (2009) The impact of isolated maternal hypothyroxinemia on perinatal morbidity. J ObstetGynaecol Can 31(11):1015– 1021
- 62. Moleti M et al (2009) Maternal isolated hypothyroxinemia: to treat or not to treat? J Endocrinol Invest 32:780–782
- **63.** Romano R, Jannini EA, Pepe M, Grimaldi A, Olivieri M, Spennati P, Cappa F, D'Armiento M (1991) The effects of iodoprophylaxis on thyroid size during pregnancy. Am J ObstetGynecol 164:482–485

64. Pedersen KM, Laurberg P, Iversen E, Knudsen PR, Gregersen HE, Rasmussen OS et al (1993) Amelioration of some pregnancy-associated variations in thyroid function by iodine supplementation. J ClinEndocrinolMetab 77:1078–1083

65. Fierro-Benitez R, Cazar R, Stanbury JB, Rodriguez P, Garces F, Fierro-Renoy F, Estrella E (1988) Effects on schoolchildren of prophylaxis of mother with iodized oil in an area of iodine deficiency. J EndocrinolInves 11:327335

66. Glinoer D, De Nayer P, Delange F, Lemone M, Toppet V, Spehl M, Grün JP, Kinthaert J, Lejeune B (1995) A randomized trial for the treatment of mild iodine deficiency during pregnancy: maternal and neonatal effects. J ClinEndocrinolMetab 80:258–262

Acknowledgements

We gratefully acknowledge the invaluable contribution of the healthcare providers in 12 provinces of Iran and thank all pregnant women who participated in this study.

Author information

Authors and Affiliations **Micronutrient Research Office, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti** University of Medical Sciences, Tehran, Iran H. Delshad Iran's Ministry of Health and Medical **Education**, Tehran, Iran A. Raeisi **General of Nutrition Department, Iran's** Ministry of Health and Medical Education, Tehran, Iran Z. Abdollahi **Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine** Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran M. Tohidi **Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine** Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran M. Hedayati Nutrition Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran P. Mirmiran National IDD Program, Iran's Ministry of Health and Medical Education, Tehran, Iran F. Nobakht

Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P. O. Box 19395-4763, Tehran, Iran F. Azizi

Contributions

All the authors have personally and actively been involved in the work presented in this paper.

Corresponding author

Correspondence to F. Azizi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical statement

The manuscript is currently being considered for publication has not been published in whole or in part in another journals.

Informed consent

Written consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delshad, H., Raeisi, A., Abdollahi, Z. *et al.* Iodine supplementation for pregnant women: a cross-sectional national interventional study. *J Endocrinol Invest* **44**, 2307– 2314 (2021). https://doi.org/10.1007/s40618-021-01538-z

ReceivedAcceptedPublished10 August 202016 February 202111 March 2021

Issue Date

October 2021

DOI https://doi.org/10.1007/s40618-021-01538-z

Keywords

Iodine Pregnancy Iodine deficiency

Urinary iodine concentration Thyroid function

Not logged in - 82.99.223.170 Not affiliated **SPRINGER NATURE**

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.