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PERSONAL INTRODUCTION

I (D.A.S.) am honored to be able to make this contri-

bution. Although other presenters have dwelled on Tom

Merigan’s many contributions to both AIDS studies

and antiviral chemotherapy generally, I can emphasize

another role for him, that of helping to bring interferon

(IFN) to the fore of our consciousness [1]. I have the

pleasant, unique role of being the only contributor not

now identified with virology, and I will address the

discipline to which I transitioned after fellowship with

Tom—a place where, it turns out, IFN has an important

host role [2]. Charles Prober, of the Department of

Pediatrics at Stanford, recently made me aware that I

have been, with my colleagues, publishing on IFN in 5

different decades now.

THE GROWING PROBLEM
OF THE MYCOSES

Fungal infections are sharply increasing in frequency as

a component of the infectious disease problem [3–14].

There are a number of reasons for this, including the

development of broader-spectrum antibacterials for

therapy and prophylaxis, leaving fungi to better com-

pete and to fill the void; increased use of internal metal

and plastic prosthetic devices, an hospitable milieu for

fungi; increased use of invasive procedures and mon-

itoring, which provide a highway for fungal invasion;

increased use of parenteral nutrition, which provides a

menstruum for fungal growth; more-aggressive im-

munosuppression for a variety of diseases, including
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autoimmune or rheumatologic diseases; more intensive

cancer chemotherapy, with enhanced survival of im-

munocompromised hosts; greater use of transplanta-

tion as therapy for organ dysfunction; AIDS; increased

drug addiction; increased survival of premature and

low-birth-weight infants in intensive care units; and

population shifts of the US population and increased

travel and tourism to the Sunbelt and to Latin America,

where there is rapid population growth and where en-

demic mycoses are encountered. The mortality due to

invasive fungal infections in some diseases is staggering:

for example, mortality due to aspergillosis in some mar-

row transplant populations is 85%, and mortality due

to candidiasis with tissue involvement is 90% [15]. The

reasons for the high rate of therapy failure include the

lack of specificity of signs and symptoms, unreliability

of diagnostic tests, and deficiencies in spectrum and/

or killing activity in currently available antifungal drugs.

Thus, new treatments are desperately needed.

IMMUNOTHERAPY FOR THE MYCOSES

Therefore, the host’s immunity may be considered as a

way to improve therapy. The rationale for immuno-

therapy in mycoses includes the association of cell-me-

diated immunity and the natural history of disease, such

as the observation of mycoses associated with compro-

mised cell-mediated immunity (e.g., cryptococcosis in

Hodgkin disease), and, in the healthy host, the corre-

lation in coccidioidomycosis of anergy, disease progres-

sion, and increasing antibody titers. There are extensive

data from experimental infections emphasizing the im-

portance of cell-mediated immunity in the mycoses, in-

cluding “subtraction” of cell-mediated immunity, such

as with thymectomy, with antilymphocyte serum, or by

the nude mouse mutation; subtraction of macrophages,

such as with use of silica or by the beige mouse mutation;

and reconstitution of cell-mediated immunity, such as

with transfer of immune lymphocytes [16–18]. We have
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again become very aware of the importance of cell-mediated

immunity in opportunistic mycoses, as a result of AIDS [19–

27]. There were initial experiments demonstrating the potential

of immunotherapy using modalities such as muramyl dipeptide

[28–30], transfer factor [31–34], and other modalities [35]. How-

ever, a bigger impetus to the present consideration of immu-

notherapy was the demonstration of cytokine effects on the an-

tifungal activities of effector cells [36–47].

IFN-g AND DEFENSE AGAINST FUNGAL
INFECTION

We have demonstrated cytokine effects on the antifungal activities

of effector cells—for example, in vitro with IFN-g and tissue

macrophage killing of Blastomyces dermatitidis [48], Paracoc-

cidioides brasiliensis [49], and Candida albicans [50] and with

pulmonary macrophage killing of Blastomyces [51], Paracoc-

cidioides [52], and Histoplasma [53] species. We then showed that

IFN-g administration in vivo would up-regulate killing of Blas-

tomyces and Paracoccidioides species by pulmonary macrophages

ex vivo [52]. We showed that neutrophils would also be up-

regulated by IFN-g, both in vitro, with increased respiratory burst

and killing of Blastomyces species [54, 55], and ex vivo, after

systemic administration for killing of Blastomyces species [56].

We have shown IFN-g activity directed against intracellular and

extracellular fungi, against the dimorphic fungi of the endemic

mycoses, and against the fungal opportunists; with murine and

human effector cells, with cells of the monocyte-macrophage

lineage, and with neutrophils; and in vitro, ex vivo, and in vivo

[49–51, 53]. Thus, IFN-g appears to be, potentially, a broad-

spectrum antifungal agent. Our work [49–51, 53] with cytokines

in these systems could be summarized as showing that effector

cell antifungal activity alone is weak, and antifungal drug activity

alone only is fungistatic [57–59]. Combining an effector cell and

an antifungal produces synergy. Combining an effector cell and

a cytokine results in enhanced antifungal activity (activation).

Combining an effector cell, an antifungal, and a cytokine results

in powerful synergy [58, 60–67].

In our serial studies of the immune response to experimental

Blastomyces infection in vivo, we noted a brisk IFN-g response

initially but, with progression, an increase in IgE and interleukin

(IL)-4 production [68]. This was consistent with a shift from

a Th1 to a Th2 response with progressive disease [68]. In our

model of paracoccidioidomycosis, in the nonprogressive set-

ting, we saw dual production of IFN-g and IL-4 by antigen-

stimulated lymph node cells, and, in the chronic form of the

disease, administering IFN-g with antifungal therapy produced

a synergistic effect [69]. We found IFN-g to be a prominent

part of the local immune response in brain in experimental

cryptococcosis [70]. Cryptococcosis was more severe in IFN-

g–knockout mice or in mice given antibody to IFN-g [62].

Other researchers showed potentiation of antifungal chemo-

therapy with IFN-g in cryptococcosis [71], with regard to sur-

vival, and we showed a modest effect of IFN-g alone on re-

duction of infectious burden and a 40-fold improvement over

amphotericin B alone when the 2 modalities were combined

[72]. IFN-g alone was found to be more dramatic in its ther-

apeutic effects in SCID mice and could result in cures of the

central nervous system when combined with amphotericin B

[73]. In a pilot placebo-controlled trial of IFN-g as adjunct

therapy to conventional chemotherapy in cryptococcosis in

HIV-positive humans, there were trends toward more rapid

sterilization of the cerebrospinal fluid, a decline in antigen titer

in cerebrospinal fluid, and mycological-clinical responses [74].

In mice given antibody to IFN-g, histoplasmosis became more

severe [75]. When mice with histoplasmosis were given IFN-

g with amphotericin, the survival rate was improved over that

in mice given amphotericin alone [76]. Others showed that

paracoccidioidomycosis worsened in mice given antibody to

IFN-g [77]. IFN-g therapy was found to reduce systemic can-

didiasis [78]. IFN-g is a prominent component of the host

immune response in rabbit coccidioidal meningitis [79]. IFN-

g responses in vitro were found to be significantly blunted in

patients with coccidioidomycosis who had disseminated dis-

ease, whereas Th2 cytokines were not up-regulated [80–82].

Young animals (and humans) are more susceptible to in-

vasive mycoses [83]. We showed that this related to depressed

killing of fungal targets (Blastomyces) by neutrophils in young

animals [84], that spleen cells of young animals produce less

IFN-g in response to nonspecific stimuli, and that the efficacy

of the neutrophils could be restored in vitro to the level of that

in adults by using IFN-g [85]. Finally, IFN-g administration

in vivo increases survival of young mice to the levels of resis-

tance seen in mature animals [85].

In addition to parenteral administration as a way to deliver

IFN-g, we have explored the possibility of gene therapy, with the

idea of delivering IFN into the central nervous system to combat

fungal meningitides, such as cryptococcosis, and to overcome

blood-brain barriers to entry of the cytokine. A vector delivered

into the central nervous system once could result in prolonged

production of IFN-g by host cells. We studied this with an ad-

enovirus with the murine IFN-g gene, a cytomegalovirus pro-

moter, and SV40 polyA inserts [86]. We determined that a dose

of virus could produce 130,000 pg/mL IFN-g in cerebrospinal

fluid even 5 days after administration, the best route for admin-

istration of the vector, and safe doses of virus [86].

PARTNERS FOR IFN-g

Administration of IL-12 is another modality that appealed to

us for immunotherapy of mycoses, largely because IL-12 turns

the Th response toward the Th1 pathway, with IFN-g pro-

duction by Th1 cells, and, via IL-12 direct action on NK cells

as well as by IL-12 induction of IL-2 and subsequent IL-2 effect
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on NK cells, the induction of IFN-g production by NK cells

[87]. We showed that administration of IL-12 in vivo could

significantly improve resistance to experimental cryptococcosis

and, when given together with fluconazole, could significantly

enhance fluconazole’s effect [88]. Others showed that anti–IL-

12 treatment of mice accelerated mortality in histoplasmosis and

that IL-12 given to SCID or immunocompetent mice was effi-

cacious and stimulated IFN-g [89, 90]. Anti–IL-12 was found

to exacerbate disease in resistant mice infected with Coccidioides

species, and IL-12 administered to susceptible mice increased

resistance and stimulated IFN-g [91]. Recently, we have shown

that IL-12 production is reduced in response to Blastomyces in-

fection in a susceptible mouse strain and that resistance to in-

fection could be conferred by IL-12 therapy [92]. However,

optimizing the IL-12 regimen is of key importance, because

excessively high doses induced resistance but were not tolerated.

PROPHYLAXIS

Prophylactic IFN-g is a proven modality to reduce infections

in patients with the congenital neutrophil deficiency of the

respiratory burst, chronic granulomatous disease [93–95]. Ran-

domized trials have shown a reduction in the number of lethal

Aspergillus infections in these patients [94].

POSSIBLE MECHANISMS

The positive interactions reviewed above between cytokines and

host defenses could have a number of explanations. These pos-

itive interactions could occur through synergistic interactions

between effector cell products and antifungals, with effector cell

production up-regulated by cytokines; antifungal therapy de-

creasing the antigen load, thus reversing the suppression of

type 1 immunity; antifungals priming effector cells for a second

signal from cytokines, thus increasing the respiratory burst;

antifungals increasing proinflammatory cytokines at a tran-

scriptional level and inhibiting anti-inflammatory cytokines; a

synergistic interaction between chitinase, a mammalian gene

product, and antifungals; effector cell stimulation by cytokines

enhancing antimicrobial uptake by the cells; cytokines restoring

a depression of host defenses by an antifungal; or increased

susceptibility of fungi, with membranes altered by antifungals,

to oxidative products of the effectors. There is published ex-

perimental evidence to support each of these mechanisms [16,

17, 62, 96, 97], and it is likely that more than one is operative.

CONCLUSION

In summary, in vitro data show that certain recombinant cy-

tokines are potent activators of specific functions of antimicrobial

host defenses against fungi. Experimental animal models have

shown protective and therapeutic cytokine activity against fungal

infection. These experimental findings provide a foundation for

clinical investigation of recombinant cytokines in the prevention

and treatment of fungal infections in various patient populations

[98–101]. Clinical trials are needed now to define a place for

IFN-g and other cytokines in antifungal chemotherapy [102].
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